

This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

SYNTHESIS AND CHARACTERIZATION OF Na, K, Ca², Ba², Sr², AND Pb² COMPLEXES WITH SOME LIPOPHILIC DIAZA-18-CROWN-6 DERIVATIVES

Hamdi Temel^a; Halil Hosgören^b; Mustafa Boybay^c

^a Department of Chemistry, Faculty of Education, University of Dicle, Diyarbakir, Turkey ^b

Department of Chemistry, Faculty of Arts and Sciences, University of Dicle, Diyarbakir, Turkey ^c

Department of Chemistry, Faculty of Arts and Sciences, University of Firat, Elazig, Turkey

Online publication date: 26 June 2002

To cite this Article Temel, Hamdi , Hosgören, Halil and Boybay, Mustafa(2002) 'SYNTHESIS AND CHARACTERIZATION OF Na, K, Ca², Ba², Sr², AND Pb² COMPLEXES WITH SOME LIPOPHILIC DIAZA-18-CROWN-6 DERIVATIVES', Spectroscopy Letters, 35: 1, 1 – 8

To link to this Article: DOI: 10.1081/SL-120013128

URL: <http://dx.doi.org/10.1081/SL-120013128>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

SYNTHESIS AND CHARACTERIZATION OF Na^+ , K^+ , Ca^{2+} , Ba^{2+} , Sr^{2+} , AND Pb^{2+} COMPLEXES WITH SOME LIPOPHILIC DIAZA-18-CROWN-6 DERIVATIVES

Hamdi Temel,¹ Halil Hosgören,² and Mustafa Boybay³

¹Department of Chemistry, Faculty of Education, and

²Department of Chemistry, Faculty of Arts and
Sciences, University of Dicle, Diyarbakir

³Department of Chemistry, Faculty of Arts and
Sciences, University of Firat, Elazig, Turkey

ABSTRACT

In this study, the complexes of 7,16-Dibenzyl-4,7,10,13-tetraoxa-7,16-diazacyclooctadecane; 7,16-Dihexyl-4,7,10,13-tetraoxa-7,16-diazacyclooctadecane; 7,16-Diheptyl-4,7,10,13-tetraoxa-7,16-diazacyclooctadecane; 7,16-Dioctyl-4,7,10,13-tetraoxa-7,16-diazacyclooctadecane; 7,16-Dinonyl-4,7,10,13-tetraoxa-7,16-diazacyclooctadecane; 7,16-Didodecyl 4,7,10,13-tetraoxa-7,16-diazacyclooctadecane with Na^+ , K^+ , Ca^{2+} , Ba^{2+} , Sr^{2+} and Pb^{2+} were prepared by using perchlorates salts. Their complexes were produced by adding the solution of metal salts in ethyl alcohol to the solution of ligand in ethyl alcohol. The complexes obtained were filtered and washed with ethyl alcohol and recrystallized in ethyl alcohol and dried in vacuum. Their complexes were investigated by using Elemental Analysis, and infrared (IR). Observed ^1H NMR,

^{13}C NMR, and ^{13}C chemical shifts are discussed in terms of conformational changes of the macrocycle.

Key Words: IR; $^1\text{H}/^{13}\text{C}$ NMR diazamacrocycles; Metal complexes

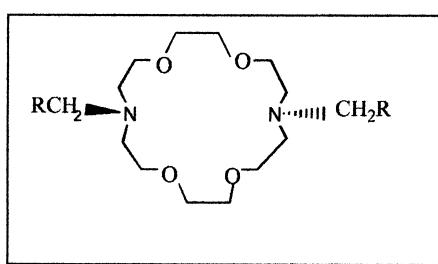
INTRODUCTION

The coordination chemistry of alkali metals is an important, growing branch of inorganic and organometallic chemistry. Although a few examples of cyclic polyethers had been known in the literature before the work of Pedersen, it was he who synthesized numerous compounds of this type and showed their ability to complex cations, both alkali metals and others^{1,2}. Hundreds of alkali metal cation complexes of macrocyclic polyethers and related ligands have been synthesized and thoroughly investigated over the last two decades³. The complexation of alkali or alkaline earth ions by dibenzo-crown ether compounds has been largely described as well as the factors affecting the formation⁴. Since alkali metal and alkaline-earth metal cations play an important role in biological systems, a detailed study of the complexation of alkaline-earth ions appears to be promising⁵.

After metal-diazapolyoxa macrocycle complexes obtained by Lehn⁶ the azacrown compounds have received considerable attention because of their ability to complex a variety of metal and organic cations and anions^{7,8}. In general preferential complexation results when the relative sizes of the cation and ligand cavities are matched⁹⁻¹³. In addition, the azacrown are important intermediates for the synthesis of the criptands and the nitrogen pivot lariat crown ethers¹⁴. They have important uses as synthetic receptors in molecular recognition processes, as catalysts in nucleophilic substitution and oxidation reactions^{15,16} and in design of chromogenic reagents which are sensitive to alkali and alkaline earth cations. In addition, they have anion complexation properties which are similar to those found in certain biological systems¹⁷.

The aim of our study is to synthesize metal complexes of crown ethers with Na^+ , K^+ , Ca^{2+} , Ba^{2+} , Sr^{2+} and Pb^{2+} cations.

EXPERIMENTAL


The chemicals were obtained from FLUKA unless otherwise cited. Ligands were recently synthesis by Hosgören¹⁸. A solution of $\text{M}^{+n}(\text{ClO}_4)_n$ (0.50 mmol) in ethyl alcohol (2 mL) added dropwise to solution of diaza-crown (0.50 mmol) in ethyl alcohol (2 mL). The mixture was stirred at room

SYNTHESIS OF METAL COMPLEXES

3

temperature over 24 h. The precipitated solid complex was filtered, washed with ethyl alcohol and recrystallized from ethyl alcohol and then dried in vacuum. Structural data of complexes with the elemental analyses performed on a Carlo Erba model 1200 instrument are given as Structure I and Table 1.

Comp	R
I	C ₆ H ₅
II	C ₅ H ₁₁
III	C ₆ H ₁₃
IV	C ₇ H ₁₅
V	C ₈ H ₁₇
VI	C ₁₁ H ₂₃

Structure I.

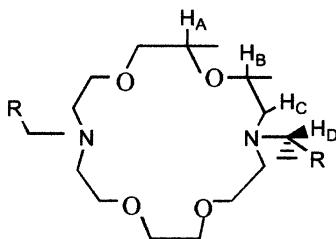
The melting points are uncorrected. IR spectra of the complexes were recorded with a Midac 1700 instrument in KBr pellets. ¹H and ¹³C NMR spectra at 200 MHz and 50.2 MHz respectively as well as the 2D spectra and decoupling experiments of the free and complexed macrocycles were recorded on a BRUKER-AC spectrometer in CDCl₃ and reported in ppm (δ) from internal TMS. The elemental analyses were conducted on Carlo Erba instrument.

RESULTS AND DISCUSSION

The IR spectra of the complexes clearly demonstrated that the COC and CCO stretching vibrations are altered compared to ligands due to conformational changes¹⁹. The ν (R-O-R) absorption is shifted to lower wave numbers in complexes providing another evidence of complexing²⁰. IR spectra of the complexes of 3300–3400, 1650–1660 and 560–570 cm⁻¹ regions are due to ν (OH), δ (HOH) and ρ (HOH), respectively, indicating the coordinated water molecules²¹. Accordingly, the IR bonds due to (ClO₄⁻) is found at 620–630 cm⁻¹. The band at 1110 cm⁻¹ due to ν (ClO₄⁻)_{asym} overlaps the ν (COC) which is found at roughly the same frequency²², Structure II and Table 2.

Table 1. Structural Data of Metal-Diazamacrocycles Complexes

	Complex Formula	M.p.°C	Yield	Calculated/ C%	Found H%	%N
I	C ₂₆ H ₄₀ N ₂ O ₉ ClNa	102–104	88	53.56 53.59	6.89 6.88	4.83 4.81
I	C ₂₆ H ₃₈ N ₂ O ₈ ClK	118–120	10	53.75 53.78	6.55 6.60	4.82 4.75
I	C ₂₆ H ₄₀ N ₂ O ₁₃ Cl ₂ Ba	265–270*	64	39.19 39.20	5.06 4.99	3.52 3.57
I	C ₂₆ H ₄₂ N ₂ O ₁₄ Cl ₂ Ca	225–230*	36	43.75 43.80	6.45 6.42	3.92 3.90
I	C ₇₈ H ₁₂₄ N ₂ O ₂₅ Cl ₂ Pb	104–106	36	50.87 50.85	6.85 6.81	4.57 4.60
II	C ₂₄ H ₅₀ N ₂ O ₄ Cl ₂ Ba	215–217	23	35.59 35.63	6.57 6.50	3.65 3.60
III	C ₂₆ H ₅₄ N ₂ O ₄ Cl ₂ Ba	162–163	62	38.42 38.45	6.89 6.92	3.44 3.43
IV	C ₂₈ H ₆₀ N ₂ O ₁₃ Cl ₂ Ba	158–160	65	40.00 40.09	7.14 7.16	3.33 3.30
IV	C ₂₈ H ₆₀ N ₂ O ₉ ClNa	26–28	24	53.63 53.66	9.58 9.60	4.47 4.50
V	C ₃₀ H ₆₄ N ₂ O ₁₃ Cl ₂ Ba	104–106	24	41.47 41.51	7.37 7.40	3.22 3.20
VI	C ₃₆ H ₇₆ N ₂ O ₉ ClNa	88–89	87	58.49 58.48	10.29 10.34	3.79 3.75
VI	C ₃₈ H ₇₄ N ₄ O ₄ S ₂ K ₂	66–67	10	57.57 57.52	9.34 9.38	7.07 7.02
VI	C ₃₆ H ₇₆ N ₂ O ₁₃ Cl ₂ Ba	171–173	43	45.37 45.37	10.98 10.99	2.94 2.97
VI	C ₃₆ H ₇₄ N ₂ O ₁₂ Cl ₂ Ca	67–70	11	50.52 50.55	8.89 8.87	3.27 3.28
VI	C ₃₆ H ₇₄ N ₂ O ₁₂ Cl ₂ Pb	25–27	40	53.93 53.90	9.24 9.28	3.49 3.45


*Decompose ^I7,16-Dibenzyl-4,7,10,13-tetraoxa-7,16-diazacyclooctadecane, ^{II}7,16-dihexyl-4,7,10,13-tetraoxa-7,16-diazacyclooctadecane, ^{III}7,16-Diheptyl-4,7,10,13-tetraoxa-7,16-iazacyclo-octadecane, ^{IV}7,16-Dioctyl-4,7,10,13-tetraoxa-7,16-diazacyclo-octadecane, ^V7,16-Dinonyl-4,7,10,13-tetraoxa-7,16-diazacyclooctadecane, ^{VI}7,16-Dido-decyl-4,7,10,13-tetraoxa-7,16-diazacyclooctadecane.

In the NMR spectroscopy of the macrocycles and N-substituted methylene protons in alkyl chains were assigned by means of selective heteronuclear decoupling experiments and 2D-HETCOR spectroscopy, Tables 3 and 4.

SYNTHESIS OF METAL COMPLEXES

5

Structure II.

Table 2. Stretching Vibrations of COC(asym) and CCO(sym) in Metal Complexes

Crown	Salt	CO _C _{asim}	CO _C _{asim}	CO _C _{sim}	CO _C _{sim}
I		1121.5	1105.3	994.8	939.28
I	NaClO ₄ ·H ₂ O	1102.2	1036.1	975.16	935.2
Δv(cm ⁻¹)		19.3	69.2	19.64	4.08
I	Ba(ClO ₄) ₂ ·H ₂ O	1093.5	1063.5	981.7	917.09
Δv(cm ⁻¹)		28	41.8	13.1	22.09
I	Pb(ClO ₄) ₂ ·3 H ₂ O	1097.9	1036.6	973.03	934.77
Δv(cm ⁻¹)		23.5	68.7	21.77	4.51
II		1127.7	1078.6	995.24	921.92
II	Ba(ClO ₄) ₂ ·H ₂ O	1103.2	1035.7	961.45	903.32
Δv(cm ⁻¹)		24.5	42.9	33.79	18.6
III		1127.7	1078.6	995.24	921.92
III	Ba(ClO ₄) ₂ ·H ₂ O	1103.2	1035.7	961.45	903.32
Δv(cm ⁻¹)		24.5	42.9	33.79	18.6
IV		1127.8	1074.1	989.22	932.18
IV	Ba(ClO ₄) ₂ ·H ₂ O	1109.9	1051.1	955.19	931.6
Δv(cm ⁻¹)		17.9	23	34.04	0.58
IV	NaClO ₄ ·H ₂ O	1106.25	1028	975.21	928.67
Δv(cm ⁻¹)		21.25	46.1	14.01	3.51
IV	Ca(ClO ₄) ₂ ·H ₂ O	1104.1	1000	962.51	912.27
Δv(cm ⁻¹)		23.7	74.1	26.77	19.91
V		1127.8	1074.1	989.22	932.18
V	Ba(ClO ₄) ₂ ·H ₂ O	1096.4	1000	960.49	894.21
Δv(cm ⁻¹)		31.4	74.1	28.73	37.97
VI		1120.8	1096.7	980.57	945.65
VI	NaClO ₄ ·H ₂ O	1099.3	1042	967.64	936.68
Δv(cm ⁻¹)		21.5	54.7	12.93	8.97
VI	Ba(ClO ₄) ₂ ·H ₂ O	1099.1	1063	972.49	944.27
Δv(cm ⁻¹)		21.7	33.7	8.08	1.38
VI	Pb(ClO ₄) ₂ ·3H ₂ O	1101.2	1040.8	967.49	937.9
Δv(cm ⁻¹)		19.6	55.9	13.02	7.75

Table 3. Proton Chemical Shifts (δ) of the Free Diazamacrocycles and with NaClO_4 in ppm

Proton	Ligand		Complex		$\Delta\delta$	
	I	VI	I	VI	I	VI
H_D	2.84	2.76	2.71	2.67	-0.13	-0.09
H_B	3.64	3.60	3.60	3.58	-0.04	-0.02
H_A	3.62	3.61	3.50	3.68	-0.12	+0.07
H_C	3.70	2.47	3.62	2.53	-0.08	+0.06
Ph	7.39–7.23	—	7.28–7.08	—	-0.11/0.15	—

Table 4. ^{13}C Chemical Shifts (δ) of Diazamacrocycles and Complexes in ppm in CDCl_3

	Ligand		NaClO_4 Complex		$\Delta\delta$		Ligand IV	$\text{BaClO}_4 \cdot \text{H}_2\text{O}$ Complex IV	$\Delta\delta$ IV
	I	VI	I	VI	I	VI			
C-1	72.75	72.75	70.61	70.56	-2.14	-2.19	72.67	72.00	-0.67
C-2	72.11	72.06	69.22	68.83	-2.89	-3.23	71.98	70.45	-1.53
C-3	62.03	59.00	60.75	56.04	-1.28	-2.96	57.97	53.56	-4.41
C-4	55.86	55.86	54.42	54.62	-1.44	-1.24	55.91	53.49	-2.42

The ^1H NMR spectra of Diazamacrocyclic in CDCl_3 consist of multiplet, in the ether region at about 2.5–3.5 ppm down field from Me_4Si and another multiplet due to aromatic protons at about 7.2–7.3 ppm down field from Me_4Si (for I). In I and VI, methylene proton resonances are shifted higher field by 0.01–0.10 ppm in metal complexes. Likewise, the aromatic proton signals of I are shifted higher field by up to 0.11–1.15 ppm, only at VI shift the resonance of H_A and H_C to lower field. The ^1H NMR behaviour is best interpreted in terms of an electric field effect. The field effect is observed not only on the methylene protons but also on all aryl protons (for I). In the shift changes depend on the distance of each proton from the complexation site, again supporting this conclusion^{23,24}.

The ^{13}C chemical shifts should be more useful for deducing conformational variations during metal complexation owing to their more characteristic dependence on stereochemistry^{25,26}. The ^{13}C chemical shifts involving the conformational changes due to complexing are moved to higher fields.

SYNTHESIS OF METAL COMPLEXES

7

ACKNOWLEDGMENT

Note: Presented in part at the Ninth International Symposium on Molecular Recognition and Inclusion, held at Lyon, 527-530, 7-12 September 1996.

REFERENCES

1. Pedersen, C.J. *J. Am. Chem. Soc.* **1967**, *89*, 2495, 7017.
2. Dietrich, D.; Viout, P.; Lehn, J.M. *Macrocyclic Chemistry* **1993**, 94.
3. Vladimir, V.G.; Corinne, B.; Howard, A. *Inorg. Chem.* **1993**, *32*, 345-346.
4. Angely, L.; Questaigne, V.; Rault-Berthelot, J. *Synthetic Metals* **1992**, *52*, 111-124.
5. Hans-Jurgen Buschmann, *Journal of Solution Chemistry* **1985**, *15* (16).
6. Dierich, B.; Lehn, J.M.; Sauvage, J.P. *Tetrahedron Letters* **1969**, *25*, 2885.
7. Bradshaw, J.S.; Krakowiak, K.E.; Izatt, R.M. *J. Heterocyclic Chem.* **1989**, *26*, 565.
8. Dietrich, B.; Lehn, J.M.; Sauvage, I.P.; Blanzat, J. *Tetrahedron* **1973**, *29*, 2629.
9. Lehn, J.M. *Acc. Chem. Res.* **1978**, *11*, 49.
10. Schultz, R.A.; White, B.D.; Dishong, D.M.; Arnold, K.A.; Gokel, G.W. *J. Am. Chem. Soc.* **1985**, *107*, 6659.
11. Çakir, Ü.; Karakaplan, M.; Temel, H.; Hosgören, H.; Erk, Ç. *Journal of Inclusion Phenomena and Molecular Recognition in Chemistry* **1996**, *26*, 21-26.
12. Aydogdu, Y.; Yakuphanoglu, F.; Aydogdu, A.; Temel, H.; Sekerci, M.; Hosgören, H. *Solid State Sciences* **2001** *3*, 377-382.
13. Temel, H.; Hosgören, H.; Çakir, Ü.; Boybay, M. *Molecular Recognition and Inclusion, Proceeding of the Ninth International Symposium on Molecular Recognition and Inclusion, Lyon, Fransa*, pp. 527-530, 1996.
14. For a review, see Kausai, A.R. *J. Chem. Soc. Pak.* **1983**, *5*, 227.
15. For a review, see Weber, E. *Kontakte (Merck)* **1983**, 38.
16. For a review, see Weber, E. *Kontakte (Dormstand)* **1984**, 26.
17. Hosseini, M.W.; Lehn, J.M.; Duff, S.R.; Gu, K. Mertes, M.P. *J. Org. Chem.* **1987**, *52*, 1662.
18. Hosgören, H.; Karakaplan, M.; Togrul, M. *collect. Czach. Chem. Commun.* **1996**, *61*.

19. Kulyukhin, S.A.; Mikheev, N.B.; Veleshko and I.E.; Auerman, L.N. Translated from *Radiokhimiya* **1992**, *34*, 88–94.
20. Lu, L.N.; Gan, X.; Tang, N.; Tan, M. *Polyhedron* **1990**, *9*, 2371–2374.
21. Lu, T.; Gan, X.; Tan, M.; Li, C.; Yu, K. *Polyhedron* **1993**, *12*, 1641–1646.
22. Rivarola, E.; Saiano, F.; Fontana, A. *Journal of Organometallic Chemistry* **1986**, *317*, 285–289.
23. Kleinpeter, E.; Stoss, S.; Gabler, M.; Schroth, W. *Magnetic Resonance in Chemistry* **1989**, *27*, 676–683.
24. Torizuka, K.; Sato, T. *Organic Magnetic Resonance* **1979**, *12* (4).
25. Kleinpeter, E.; Stoss, S.; Gabler, M.; Schroth, W. *Magnetic Resonance in Chemistry* **1989**, *27*, 676–683.
26. Kleinpeter, E.; Borsdorf, R. *¹³C NMR Spectroskopie In der Organischen Chemie*; Akademie-Verlag: Berlin, 1981.

Received July 21, 1999

Accepted March 2, 2001

Request Permission or Order Reprints Instantly!

Interested in copying and sharing this article? In most cases, U.S. Copyright Law requires that you get permission from the article's rightsholder before using copyrighted content.

All information and materials found in this article, including but not limited to text, trademarks, patents, logos, graphics and images (the "Materials"), are the copyrighted works and other forms of intellectual property of Marcel Dekker, Inc., or its licensors. All rights not expressly granted are reserved.

Get permission to lawfully reproduce and distribute the Materials or order reprints quickly and painlessly. Simply click on the "Request Permission/Reprints Here" link below and follow the instructions. Visit the [U.S. Copyright Office](#) for information on Fair Use limitations of U.S. copyright law. Please refer to The Association of American Publishers' (AAP) website for guidelines on [Fair Use in the Classroom](#).

The Materials are for your personal use only and cannot be reformatted, reposted, resold or distributed by electronic means or otherwise without permission from Marcel Dekker, Inc. Marcel Dekker, Inc. grants you the limited right to display the Materials only on your personal computer or personal wireless device, and to copy and download single copies of such Materials provided that any copyright, trademark or other notice appearing on such Materials is also retained by, displayed, copied or downloaded as part of the Materials and is not removed or obscured, and provided you do not edit, modify, alter or enhance the Materials. Please refer to our [Website User Agreement](#) for more details.

Order now!

Reprints of this article can also be ordered at
<http://www.dekker.com/servlet/product/DOI/101081SL120013128>